题目内容
分析:过C作地面的垂线CG,交AE于F,在构造的Rt△ACF中,已知∠CAE的度数及AC的长,可求得CF的值,从而由CG=CF+AD得到CG的长,即C到地面的距离.
解答:
解:如图;过点C作CG⊥AE于F,交地面于G;
由AC=AB+BC=50+35=85cm,FG=AD,即FG=8cm,
在Rt△ACF中,∠CAE=50°,
∴CF=ACsin50°=85×0.77=65.45cm,
∴CG=CF+FG=65.45+8≈73cm.(10分)
故C道地面的距离为73厘米.
由AC=AB+BC=50+35=85cm,FG=AD,即FG=8cm,
在Rt△ACF中,∠CAE=50°,
∴CF=ACsin50°=85×0.77=65.45cm,
∴CG=CF+FG=65.45+8≈73cm.(10分)
故C道地面的距离为73厘米.
点评:本题重在利用直角三角形中的三角函数关系,根据已知求未知.
练习册系列答案
相关题目