题目内容
【题目】如图,正方形ABCD的三个顶点A、B、D分别在长方形 EFGH的边EF、FG、EH上,且C到HG的距离是1,到点H,G的距离分别为
,
,则正方形ABCD的面积为______.
![]()
【答案】13
【解析】
根据全等三角形的性质定理、三角形勾股定理进行运算.
如图作ML//HG,连接CH、CG、CT交HG于点T.
![]()
∠ADC=90°,且∠EDH=180°,
∠DAE+∠FAB=90°,
在直角△EAD中,∠EAD+∠EDA=90°,
∠EAD=∠FBA.
在直角△ABF中,
∠AFB=∠EDA.
△ABF≌△DAE.
同理可得△ABF≌△DAE≌△BLC≌△DMC,
CH=
CG=
,在△HCG中,
由勾股定理得HG=
,
CT=1,
同理可得TH=2,且ML//HG,
CT=MH=1,HT=CM,=2,
△ABF≌△DAE≌△BLC≌△DMC,
DM=CL=3
SABCD=SFLME-4S△DMC=15-
3
1
4=13
故答案为13.
练习册系列答案
相关题目
【题目】某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:
A | B | |
进价(万元/套) | 1.5 | 1.2 |
售价(万元/套) | 1.65 | 1.4 |
该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元。
(毛利润=(售价 - 进价)×销售量)
(1)该商场计划购进A,B两种品牌的教学设备各多少套?
(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少数量的1.5倍。若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?