题目内容
如图,已知边长为4的正方形ABCD,P是BC边上一动点(与B、C不重合),连结AP,作PE⊥AP交∠BCD的外角平分线于E.设BP=x,△PCE面积为y,则y与x的函数关系式是
- A.y=2x+1
- B.y=
x-2x2 - C.y=2x-
x2 - D.y=2x
C
分析:过E作EH⊥BC于H,求出EH=CH,求出△BAP∽△HPE,得出
=
,求出EH=x,代入y=
×CP×EH求出即可.
解答:
过E作EH⊥BC于H,
∵四边形ABCD是正方形,
∴∠DCH=90°,
∵CE平分∠DCH,
∴∠ECH=
∠DCH=45°,
∵∠H=90°,
∴∠ECH=∠CEH=45°,
∴EH=CH,
∵四边形ABCD是正方形,AP⊥EP,
∴∠B=∠H=∠APE=90°,
∴∠BAP+∠APB=90°,∠APB+∠EPH=90°,
∴∠BAP=∠EPH,
∵∠B=∠H=90°,
∴△BAP∽△HPE,
∴
=
,
∴
=
,
∴EH=x,
∴y=
×CP×EH
=
(4-x)•x
y=2x-
x2,
故选C.
点评:本题考查了正方形性质,角平分线定义,相似三角形的性质和判定的应用,关键是能用x的代数式把CP和EH的值表示出来.
分析:过E作EH⊥BC于H,求出EH=CH,求出△BAP∽△HPE,得出
解答:
∵四边形ABCD是正方形,
∴∠DCH=90°,
∵CE平分∠DCH,
∴∠ECH=
∵∠H=90°,
∴∠ECH=∠CEH=45°,
∴EH=CH,
∵四边形ABCD是正方形,AP⊥EP,
∴∠B=∠H=∠APE=90°,
∴∠BAP+∠APB=90°,∠APB+∠EPH=90°,
∴∠BAP=∠EPH,
∵∠B=∠H=90°,
∴△BAP∽△HPE,
∴
∴
∴EH=x,
∴y=
=
y=2x-
故选C.
点评:本题考查了正方形性质,角平分线定义,相似三角形的性质和判定的应用,关键是能用x的代数式把CP和EH的值表示出来.
练习册系列答案
相关题目
①BE=CE;②sin∠EBP=
| 1 |
| 2 |
| A、①④⑤ | B、①②③ |
| C、①②④ | D、①③④ |
A、10
| ||
B、10-5
| ||
C、5
| ||
D、20-10
|
| 3 |
| 2 |
A、1<P1C<
| ||||
B、
| ||||
C、
| ||||
D、
|