题目内容
在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).(1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长;
(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答:
①tan∠PEF的值是否发生变化?请说明理由;
②直接写出从开始到停止,线段EF的中点经过的路线长.
分析:(1)由勾股定理求PB,利用互余关系证明△APB∽△DCP,利用相似比求PC;
(2)①tan∠PEF的值不变.过F作FG⊥AD,垂足为G,同(1)的方法证明△APB∽△DCP,得相似比
=
=
=2,再利用锐角三角函数的定义求值;
②如图3,画出起始位置和终点位置时,线段EF的中点O1,O2,连接O1O2,线段O1O2即为线段EF的中点经过的路线长,也就是△BPC的中位线.
(2)①tan∠PEF的值不变.过F作FG⊥AD,垂足为G,同(1)的方法证明△APB∽△DCP,得相似比
| PF |
| PE |
| GF |
| AP |
| 2 |
| 1 |
②如图3,画出起始位置和终点位置时,线段EF的中点O1,O2,连接O1O2,线段O1O2即为线段EF的中点经过的路线长,也就是△BPC的中位线.
解答:解:(1)在矩形ABCD中,∠A=∠D=90°,
AP=1,CD=AB=2,则PB=
,
∴∠ABP+∠APB=90°,
又∵∠BPC=90°,
∴∠APB+∠DPC=90°,
∴∠ABP=∠DPC,
∴△APB∽△DCP,
∴
=
即
=
,
∴PC=2
;
(2)①tan∠PEF的值不变.
理由:过F作FG⊥AD,垂足为G,
则四边形ABFG是矩形,
∴∠A=∠PGF=90°,GF=AB=2,
∴∠AEP+∠APE=90°,
又∵∠EPF=90°,
∴∠APE+∠GPF=90°,
∴∠AEP=∠GPF,
∴△APE∽△GPF,
∴
=
=
=2,
∴Rt△EPF中,tan∠PEF=
=2,
∴tan∠PEF的值不变;
②设线段EF的中点为O,连接OP,OB,
∵在Rt△EPF中,OP=
EF,
在Rt△EBF中,OB=
EF,
∴OP=OB=
EF,
∴O点在线段BP的垂直平分线上,
∴线段EF的中点经过的路线长为O1O2=
PC=
.

AP=1,CD=AB=2,则PB=
| 5 |
∴∠ABP+∠APB=90°,
又∵∠BPC=90°,
∴∠APB+∠DPC=90°,
∴∠ABP=∠DPC,
∴△APB∽△DCP,
∴
| AP |
| CD |
| PB |
| PC |
| 1 |
| 2 |
| ||
| PC |
∴PC=2
| 5 |
(2)①tan∠PEF的值不变.
理由:过F作FG⊥AD,垂足为G,
则四边形ABFG是矩形,
∴∠A=∠PGF=90°,GF=AB=2,
∴∠AEP+∠APE=90°,
又∵∠EPF=90°,
∴∠APE+∠GPF=90°,
∴∠AEP=∠GPF,
∴△APE∽△GPF,
∴
| PF |
| PE |
| GF |
| AP |
| 2 |
| 1 |
∴Rt△EPF中,tan∠PEF=
| PF |
| PE |
∴tan∠PEF的值不变;
②设线段EF的中点为O,连接OP,OB,
∵在Rt△EPF中,OP=
| 1 |
| 2 |
在Rt△EBF中,OB=
| 1 |
| 2 |
∴OP=OB=
| 1 |
| 2 |
∴O点在线段BP的垂直平分线上,
∴线段EF的中点经过的路线长为O1O2=
| 1 |
| 2 |
| 5 |
点评:本题考查了相似三角形的判定与性质,矩形的性质,解直角三角形.关键是利用互余关系证明相似三角形.
练习册系列答案
相关题目
AB
.(写出一条线段即可)