题目内容
在Rt△ABC中∠BAC=90º,E,F分别是BC,AC的中点,延长BA到点D,使AD=AB,连接DE,DF。
(1)试说明AF与DE互相平分;
(2)若BC=4,求DF的长。
若,则 .
给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.
(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;
(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.
①求证:△BCE是等边三角形;
②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.
某校为了解该校1300名毕业生的数学考试成绩,从中抽查了130名考生的数学成绩.在这次调查中,样本容量是 .
为了了解我市2014年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析.在这个问题中,样本是指( )
A.150 B.被抽取的150名考生
C.被抽取的150名考生的中考数学成绩 D.我市2014年中考数学成绩
先化简,在求值:,其中a=4
已知关于x的方程的解是负数,则m的取值范围是_________.
如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:
(1)以A点为旋转中心,将△ABC绕点A逆时针旋转90°得△AB1C1,画出△AB1C1.
(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.
(3)作出点B1关于x轴的对称点P. 若点P向右平移x个单位长度后落在△A2B2C2的内部(不含落在△A2B2C2的边上),请直接在下面的横线上写出x的取值范围.(提醒:每个小正方形边长为1个单位长度) .
如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为( )
A.120° B. 180° C. 240° D. 300°