题目内容
一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误的是( )
A.极差是20 B.中位数是91 C.众数是98 D.平均数是91
(10分)如图,点P是正方形ABCD内一点,点P到点A,B和D的距离分别为1,,.△ADP沿点A旋转至△ABP’,连结PP’,并延长AP与BC相交于点Q.
(1)求证:△APP’是等腰直角三角形;
(2)求∠BPQ的大小;
(3)求CQ的长.
如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF交AC于点H,则的值为( )
A. B.1 C. D.
如图,在Rt△AOB中,OA=OB=3,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点P为切点).则切线长PQ的最小值为 .
PM2.5是指大气中直径小于或等于0.0000025m的颗粒物.将0.0000025用科学记数法可表示为 .
如图,抛物线y=-x2+bx+c与直线y=x+1交于A、B两点,点A在x轴上,点B的横坐标是2.点P在直线AB上方的抛物线上,过点P分别作PC∥y轴、PD∥x轴,与直线AB交于点C、D,以PC、PD为边作矩形PCQD,设点Q的坐标为(m,n).
(1)点A的坐标是 ,点B的坐标是 ;
(2)求这条抛物线所对应的函数关系式;
(3)求m与n之间的函数关系式(不要求写出自变量n的取值范围);
(4)请直接写出矩形PCQD的周长最大时n的值.
某市为了在冬季下雪时更好的清扫路面积雪,新购进一批清雪车.每辆新清雪车比每辆旧清雪车每小时多清扫路面2km,每辆新清雪车清扫路面35km与每辆旧清雪车清扫路面25km所用的时间相同,求每辆旧清雪车每小时清扫路面多少km?
(9分)云南年秋季以来遭遇百年一遇的全省性特大旱灾,部分坝塘干涸,小河、小溪断流,更为严重的情况是有的水库已经见底,全省库塘蓄水急剧减少,为确保城乡居民生活用水,有关部门需要对某水库的现存水量进行统计,以下是技术员在测量时的一些数据:水库大坝的横截面是梯形(如图所示),,为水面,点在 上,测得背水坡的长为米,倾角,迎水坡上线段的长为米,.
(1)请你帮技术员算出水的深度(精确到米,参考数据);
(2)就水的深度而言,平均每天水位下降必须控制在多少米以内,才能保证现有水量至少能使用天?(精确到米)
过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为( )