题目内容

20、如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC于点D,交AB于点M,证明:△BCD是等腰三角形.
分析:依题意可得∠ABC=∠C,根据线段垂直平分线的性质可得∠C=∠BDC,从而证得△BCD为等腰三角形.
解答:证明:∵AB=AC,∠A=36°,
∴∠ABC=∠C=72°.
∵MN垂直平分AB,
∴AD=BD,∠ABD=∠A=36°,∠BDC=72°.
∴∠C=∠BDC.
∴BC=BD.
∴△BCD是等腰三角形.
点评:本题考查的是等腰三角形的判定,线段垂直平分线的性质,等腰三角形的判定的有关知识,难度一般.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网