题目内容
矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线l上进行两次旋转,则点B在两次旋转过程中经过的路径的长是( )
A. B. C. D.
已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是( )
A. 选①② B. 选选①③ C. 选②③ D. 选②④
(1)计算:()0+﹣|﹣3|+tan45°;
(2)计算:(x+2)2﹣2(x﹣1).
如图,在平面直角坐标系中,已知点A(0,2),△AOB为等边三角形,P是x轴上一个动点(不与原点O重合),以线段AP为一边在其右侧作等边三角形△APQ.
(1)求点B的坐标;
(2)在点P的运动过程中,∠ABQ的大小是否发生改变?如不改变,求出其大小;如改变,请说明理由.
(3)连接OQ,当OQ∥AB时,求点P的坐标.
如图,Rt⊿ABC中,∠C = 90º,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=6,OC=,则直角边BC的长为___________
分解因式x2y-y3的结果正确的是( )
A. y(x+y)2 B. y(x-y)2 C. y(x2-y2) D. y(x+y)(x-y)
阅读材料:求1+2+22+23+24+…+22013的值.
【解析】设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:
2S=2+22+23+24+25+…+22013+22014
将下式减去上式得2S﹣S=22014﹣1
即S=22014﹣1
即1+2+22+23+24+…+22013=22014﹣1
请你仿照此法计算:
(1)1+2+22+23+24+…+210
(2)1+3+32+33+34+…+3n(其中n为正整数).
小萌在利用完全平方公式计算一个二项整式的平方时,得到正确结果4x2+20xy+■,不小心把最后一项染黑了,你认为这一项是( )
A. 5y2 B. 10y2 C. 100y2 D. 25y2
比较大小: _____1(填“<”或“>”或“=”).