题目内容
(本题满分8分)如图,已知锐角θ和线段c,用直尺和圆规求作一直角△ABC,使∠BAC=θ,斜边AB=c.(不需写作法,保留作图痕迹)
已知 , 那么 a = 。
如图1,矩形ABCD中,点P从A出发,以3cm/s的速度沿边A→B→C→D匀速运动;同时点Q从B出发,沿边B→C→D匀速运动,当其中一个点到达终点时两点同时停止运动,设点P运动的时间为t s.△APQ的面积s(cm2)与t(s)之间函数关系的部分图像由图2中的曲线段OE与线段EF给出.
(1)点Q运动的速度为 cm/s,a﹦ cm2;
(2)若BC﹦3cm,
①写出当t>3时S关于t的函数关系式;
②在图(2)中画出①中相应的函数图像.
为了早日实现“绿色无锡,花园之城”的目标,无锡对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是 ( )
A. B.
C. D.
下列各式、、、、中分式有 ( )
A.2个 B.3个 C.4个 D.5个
(本题满分8分)(1)计算:+-;
(2)化简:
函数y=中自变量x的取值范围是 .
如图,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.
(1)求证:△ADE≌△CFE;
(2)若GB=2,BC=4,BD=1,求AB的长.
若分式的值为0,则x的值等于 .