题目内容

已知,Rt△ABC中的两个直角边a,b分别是关于x的方程x2-x+k=0的两个实数根,且sinA+sinB=,求k值及∠A的大小.
【答案】分析:根据勾股定理将sinA+sinB=转化为关于a,b的方程,在用根与系数的关系转化为关于k的方程,求出k的值并检验,由根的判别式知两直角边a=b,得出∠A的大小.
解答:解:由题意知a+b=,ab=k.
∵sinA+sinB=
+=
=
==
解得k=
代入原方程得x2-x+=0.
∵△=2-2=0.
∴a=b=
所以∠A=45°.
点评:(1)一元二次方程根的情况与判别式△的关系:
①△>0?方程有两个不相等的实数根;
②△=0?方程有两个相等的实数根;
③△<0?方程没有实数根.
(2)一元二次方程根与系数的关系:xl+x2=-,xl•x2=
(3)在Rt△ABC中,若∠C=90°,则sinA=,a2+b2=c2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网