题目内容

如图,已知Rt△ABC中,∠ACB=90°,CD是边AB上的中线,BC=2,cot∠ACD=数学公式,求AB的长.

解:在Rt△ABC中,
∵∠ACB=90°,AD=BD,
∴CD=AD.
∴∠ACD=∠A.
∵cot∠ACD=
∴ctgA=

∵BC=2,
∴AC=3.
∴在Rt△ABC中,AB===
故答案为:
分析:根据直角三角形斜边上的中线等于斜边的一半求出AD=BD=CD,所以∠ACD=∠A,然后利用∠ACD的余切值求出AC的值,再利用勾股定理即可求出AB的长度.
点评:本题考查了解直角三角形,利用直角三角形斜边上的中线等于斜边的一半,根据边相等求出∠ACD=∠A是解题的关键,还考查了勾股定理的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网