题目内容
如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是_____________.
下列说法正确的是( )
A. 每个命题都有逆命题 B. 每个定理都有逆定理
C. 真命题的逆命题都是真命题 D. 假命题的逆命题都是假命题
计算:
在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.
(1)若抛物线经过点C、A、A′,求此抛物线的解析式;
(2)点M时第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;
(3)若P为抛物线上一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.
如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_______cm2.
有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( )
A. x(x﹣1)=45 B. x(x+1)=45
C. x(x﹣1)=45 D. x(x+1)=45
如图,在等边三角形ABC中,BC=6cm. 射线AG//BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s) ;
(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;
(2)求当t为何值时,四边形ACFE是菱形;
(3)是否存在某一时刻t,使以A、F、C、E为顶点的四边形内角出现直角?若存在,求出t的值;若不存在,请说明理由.
若3,m,5为三角形三边,化简: 得( ).
A. -10 B. -2m+6 C. -2m-6 D. 2m-10
学校要组织一场篮球联赛,赛制为单循环形式(每两队之间都只赛一场),计划安排10场比赛,应邀请_________ 个球队参加比赛.