题目内容
已知x2+y2-4x+6y+13=0,则代数式x+y的值为( ).
A.-1 B.1 C.5 D.36
随着人民生活水平的不断提高,大丰区家庭轿车的拥有量逐年增加.据统计,怡景小区2012年底拥有家庭轿车144辆,2014年底家庭轿车的拥有量达到196辆.2014年底小区拥有室内车位和露天车位共180个.假设该小区2012年底到2016年底家庭轿车拥有量的年平均增长率都相同.
(1)估计该小区到2015年底家庭轿车将达到多少辆?(结果四舍五入取整数)
(2)为了缓解停车矛盾,该小区决定投资25万元再建造若干个停车位.据测算,建造费用分别为室内车位6000元/个,露天车位2000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的3倍,但不超过室内车位的4.5倍.在投资款恰好用完的情况下求该小区可建两种车位各多少个?试写出所有可能的方案.并判断有没有方案能够满足2016年底小区所有轿车同时停车的需求?
已知一个圆的半径为5cm,则它的内接正六边形的边长为 cm.
【答案】5
【解析】
试题分析:首先根据题意画出图形,六边形ABCDEF是正六边形,易得△OAB是等边三角形,又由圆的半径为5cm,即可求得它的内接六边形的边长=5cm.
考点:圆内接正六边形
【题型】填空题【适用】一般【标题】2016届江苏省滨海县一中九年级上学期期中考试数学试卷(带解析)【关键字标签】【结束】
有一个能自由转动的转盘如图,盘面被分成8个大小与形状都相同的扇形,颜色分为黑白两种,将指针的位置固定,让转盘自由转动,当它停止后,指针指向白色扇形的概率是 .
如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.
(1)求此抛物线的解析式.
(2)求此抛物线顶点D的坐标和四边形ABDC的面积.
在同一坐标系中,一次函数y=ax+b与二次函数y=ax2+b的大致图象是( ).
如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C.若∠A=40°.∠B′=110°,则∠BCA′的度数是( ).
A.110° B.80° C.40° D.30°
如图,已知在Rt△ABC中,∠ACB=90°,AC=6,BC=8,BE平分∠ABC交AC于点E,EF⊥AB,垂足为F.
(1)求EF的长度;
(2)作CD⊥AB,垂足为D,CD与BE相交于G,试说明:CE=CG
某城市2003年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2005年底增加到363公顷.设绿化面积平均每年的增长率为x,由题意,所列方程正确的是( ).
A.300(1+x)=363 B.300(1+x)2=363
C.300(1+2x)=363 D.363(1-x)2=300
如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为( )
A. B. C. D.