题目内容
三角形的三边长分别为6,8,10,它的最长边上的高为
- A.6
- B.2.4
- C.8
- D.4.8
D
分析:根据已知先判定其形状,再根据三角形的面积公式求得其高.
解答:∵三角形的三边长分别为6,8,10,符合勾股定理的逆定理62+82=102,
∴此三角形为直角三角形,则10为直角三角形的斜边,
设三角形最长边上的高是h,
根据三角形的面积公式得:
×6×8=
×10h,
解得h=4.8.
故选D.
点评:考查了勾股定理的逆定理,解答此题的关键是先判断出三角形的形状,再根据三角形的面积公式解答.
分析:根据已知先判定其形状,再根据三角形的面积公式求得其高.
解答:∵三角形的三边长分别为6,8,10,符合勾股定理的逆定理62+82=102,
∴此三角形为直角三角形,则10为直角三角形的斜边,
设三角形最长边上的高是h,
根据三角形的面积公式得:
解得h=4.8.
故选D.
点评:考查了勾股定理的逆定理,解答此题的关键是先判断出三角形的形状,再根据三角形的面积公式解答.
练习册系列答案
相关题目