题目内容
若直角三角形的两直角边长为a、b,且满足
,则该直角三角形的斜边长为 .
考点:
勾股定理;非负数的性质:绝对值;非负数的性质:算术平方根.
分析:
根据非负数的性质求得a、b的值,然后利用勾股定理即可求得该直角三角形的斜边长.
解答:
解:∵
,
∴a2﹣6a+9=0,b﹣4=0,
解得a=3,b=4,
∵直角三角形的两直角边长为a、b,
∴该直角三角形的斜边长=
=
=5.
故答案是:5.
点评:
本题考查了勾股定理,非负数的性质﹣绝对值、算术平方根.任意一个数的绝对值(二次根式)都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.
练习册系列答案
相关题目
若直角三角形的两直角边长分别为8cm和6cm,则斜边上的中线长为( )
| A、8 | B、10 | C、5 | D、6 |