题目内容

4.如图,已知第一象限内的点A在反比例函数y=$\frac{2}{x}$上,第二象限内的点B在反比例函数y=$\frac{k}{x}$上,且OA⊥OB,tanA=$\sqrt{2}$,则k的值为-4.

分析 作AC⊥x轴于点C,作BD⊥x轴于点D,易证△OBD∽△AOC,则面积的比等于相似比的平方,即tanA的平方,然后根据反比例函数中比例系数k的几何意义即可求解.

解答 解:如图
作AC⊥x轴于点C,作BD⊥x轴于点D.
则∠BDO=∠ACO=90°,
则∠BOD+∠OBD=90°,
∵OA⊥OB,
∴∠BOD+∠AOC=90°,
∴∠BOD=∠AOC,
∴△OBD∽△AOC,
∴$\frac{{S}_{△OBD}}{{S}_{△AOC}}$=($\frac{OB}{OA}$)2=(tanA)2=2,
又∵S△AOC=$\frac{1}{2}$×2=1,
∴S△OBD=2,
∴k=-4.
故答案为:-4.

点评 本题考查了相似三角形的判定与性质,以及反比例函数的比例系数k的几何意义,正确作出辅助线求得两个三角形的面积的比是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网