题目内容
(本题满分10分)解方程:
一组数据-1,2,3,-1,0的中位数和众数分别是( )
A.2,-1 B.0,-1 C.1.5,0 D、-1,0
小明在学习反比例函数的图象时,他的老师要求同学们根据“探索一次函数y1=x+1的图象”的基本步骤,在纸上逐步探索函数y2=的图象,并且在黑板上写出4个点的坐标:A(,),B(1,2),C(1,),D(﹣2,﹣1).
(1)在A、B、C、D四个点中,任取一个点,这个点既在直线y1=x+1又在双曲线y2=上的概率是多少?
(2)小明从A、B、C、D四个点中任取两个点进行描点,求两点都落在双曲线y2=上的概率.
)如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是( )
A.主视图的面积为5
B.左视图的面积为3
C.俯视图的面积为3
D.三种视图的面积都是4
(本题满分12分)如图,已知的中垂线交于点,交于点,有下面3个结论:
①是等腰三角形;
②∽;
③点D是线段AC的黄金分割点.
请你从以上结论中只选一个加以证明
(友情提醒:证明①得8分,证明②得10分,证明③得12分).
已知反比例函数的图象通过点(,),则当时, .
兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.5米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为( )
A.9.5米 B.10.75米 C.11.8米 D.9.8米
(本题满分6分)先化简,再求值:,其中.
(9分)常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).
这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:
(1)分解因式x2﹣2xy+y2﹣16;
(2)△ABC三边a,b,c 满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.