题目内容

已知:如图,AD平分∠BAC,M是BC的中点,MF∥AD交CA的延长线于F,求证:BE=CF.
分析:延长EM到G,使MG=EM,连接GC,推出∠1=∠F,证△BEM≌△CGM,推出BE=CG,∠1=∠G=∠F,推出CF=CG,即可得出答案.
解答:证明:延长EM到G,使MG=EM,连接GC,
∵MF∥AD,
∴∠2=∠F,∠4=∠3,
∵AD平分∠BAC,
∴∠2=∠4,
∵∠1=∠3,
∴∠1=∠F,
∵M是BC的中点,
∴BM=CM,
∵在△BEM和△CGM中,
EM=MG
∠BME=∠GMC
BM=MC

∴△BEM≌△CGM(SAS),
∴BE=CG,∠1=∠G,
∵∠1=∠F,
∴∠F=∠G,
∴CG=CF,
∴BE=CF.
点评:本题考查了平行线的性质,角平分线定义,全等三角形的性质和判定,等腰三角形的判定,对顶角相等等知识点的综合运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网