题目内容
已知:如图,△ABC中,过AB的中点F作DE⊥BC,垂足为E,交CA的延长线于点D.若EF=3,BE=4,∠C=45°,则DF:FE的值为________.
7:3
分析:过点A作AG⊥BC,垂足为G,根据DE⊥BC,F是AB中点,利用三角形中位线定理求出EG=BE=4,AG=2EF=6,再根据∠C=45°,DE⊥BC,求出DF,然后即可得出答案.
解答:
解:过点A作AG⊥BC,垂足为G,
∵DE⊥BC∴EF∥AG
又∵F是AB中点
∴E也为BG中点,
=
=
∴EG=BE=4 AG=2EF=6
又∵∠C=45°∴AG=GC=6
∴EC=EG+GC=10
又∵∠C=45° DE⊥BC
∴DE=EC=10
∴DF=DE-EF=10-3=7
∴DF:FE=7:3.
故答案为:7:3.
点评:此题主要考查学生对勾股定理的理解和掌握,解答此题的关键是利用三角形中位线定理求出EG=BE=4,AG=2EF=6.
分析:过点A作AG⊥BC,垂足为G,根据DE⊥BC,F是AB中点,利用三角形中位线定理求出EG=BE=4,AG=2EF=6,再根据∠C=45°,DE⊥BC,求出DF,然后即可得出答案.
解答:
∵DE⊥BC∴EF∥AG
又∵F是AB中点
∴E也为BG中点,
∴EG=BE=4 AG=2EF=6
又∵∠C=45°∴AG=GC=6
∴EC=EG+GC=10
又∵∠C=45° DE⊥BC
∴DE=EC=10
∴DF=DE-EF=10-3=7
∴DF:FE=7:3.
故答案为:7:3.
点评:此题主要考查学生对勾股定理的理解和掌握,解答此题的关键是利用三角形中位线定理求出EG=BE=4,AG=2EF=6.
练习册系列答案
相关题目