题目内容
【题目】如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD等于( )
![]()
A.20°B.25°C.30°D.32.5°
【答案】A
【解析】
连接OD,根据三角形内角和定理和等边对等角求出∠DOB=40°,再根据圆周角定理即可求出∠BAD的度数.
解:连接OD,
![]()
∵OC⊥AB,
∴∠COB=90°,
∵∠AEC=65°,
∴∠OCE=180°﹣90°﹣65°=25°,
∵OD=OC,
∴∠ODC=∠OCD=25°,
∴∠DOC=180°﹣25°﹣25°=130°,
∴∠DOB=∠DOC﹣∠BOC=130°﹣90°=40°,
∴由圆周角定理得:∠BAD=
∠DOB=20°,
故选:A.
练习册系列答案
相关题目
【题目】张老师把微信运动里“好友计步榜”排名前20的好友一天行走的步数做了整理,绘制了如下不完整的统计图表:
组别 | 步数分组 | 频率 |
A | x<6000 | 0.1 |
B | 6000≤x<7000 | 0.5 |
C | 7000≤x<8000 | m |
D | x≥8000 | n |
合计 | 1 |
根据信息解答下列问题:
(1)填空:m= ,n= ;并补全条形统计图;
(2)这20名朋友一天行走步数的中位数落在 组;(填组别)
(3)张老师准备随机给排名前4名的甲、乙、丙、丁中的两位点赞,请求出甲、乙被同时点赞的概率.
![]()