题目内容
下列结论正确的是( )
A. 垂直于弦的弦是直径 B. 圆心角等于圆周角的2倍
C. 平分弦的直径垂直该弦 D. 圆内接四边形的对角互补
阅读下面材料,并解决问题:
(1)如图(1),等边△ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5欲求∠APB的度数,由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.
请将下列解题过程补充完整。
∵△ACP′≌△ABP,
∴AP′= =3,CP′= =4,∠ =∠APB.
由题意知旋转角∠PA P′=60°,∴△AP P′为 三角形,
P P′=AP=3,∠A P′P=60°。
易证△P P′C为直角三角形,且∠P P′C=90°,
∴∠APB=∠AP′C=∠A P′P+∠P P′C= °+ °= °.
请你利用第(1)题的解答思想方法,解答下面问题:
已知如图(2),△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,
求证:EF2=BE2+FC2.
若扇形的半径为3cm,扇形的面积为2πcm2, 则该扇形的圆心角为________ °,弧长为________ cm.
如图所示,将绕其顶点顺时针旋转后得,则与是________关系,且的度数为________度.
一个点到一个圆的最短距离为,最长距离为,则这个圆的半径为________.
如图,,已知中,,,的顶点、分别在边、上,当点在边上运动时,随之在上运动,的形状始终保持不变,在运动的过程中,点到点的最小距离为( )
A. 5 B. 7 C. 12 D.
自主学习,请阅读下列解题过程.
解一元二次不等式:>0.
【解析】设=0,解得:=0,=5,则抛物线y=与x轴的交点坐标为(0,0)和(5,0).画出二次函数y=的大致图象(如图所示),由图象可知:当x<0,或x>5时函数图象位于x轴上方,此时y>0,即>0,所以,一元二次不等式>0的解集为:x<0或x>5.
通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:
(1)上述解题过程中,渗透了下列数学思想中的 和 .(只填序号)
①转化思想 ②分类讨论思想 ③数形结合思想
(2)一元二次不等式<0的解集为 .
(3)用类似的方法解一元二次不等式:>0.
将抛物线y=ax2+bx+c向左平移2个单位,再向下平移3个单位得抛物线y=﹣(x+2)2+3,则( )
A. a=﹣1,b=﹣8,c=﹣10 B. a=﹣1,b=﹣8,c=﹣16
C. a=﹣1,b=0,c=0 D. a=﹣1,b=0,c=6
下列算式中,结果等于的是( )
A. B. C. D.