题目内容
如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于
- A.

- B.

- C.

- D.

B
分析:连接OP,过D作DM⊥AC于M,求出AC长,根据三角形的面积公式求出CM的值,根据S△AOD=S△APO+S△DPO代入求出PE+PF=DM即可.
解答:连接OP,过D作DM⊥AC于M,
∵四边形ABCD是矩形,
∴AO=OC=
AC,OD=OB=
BD,AC=BD,∠ADC=90°
∴OA=OD,
由勾股定理得:AC=
=5,
∵S△ADC=
×3×4=
×5×DM,
∴DM=
,

∵S△AOD=S△APO+S△DPO,
∴
(AO×DM)=
(AO×PE)+
(DO×PF),
即PE+PF=DM=
,
故选B.
点评:本题考查了矩形的性质、三角形的面积公式、勾股定理的应用,关键是求出PE+PF=DM.
分析:连接OP,过D作DM⊥AC于M,求出AC长,根据三角形的面积公式求出CM的值,根据S△AOD=S△APO+S△DPO代入求出PE+PF=DM即可.
解答:连接OP,过D作DM⊥AC于M,
∵四边形ABCD是矩形,
∴AO=OC=
∴OA=OD,
由勾股定理得:AC=
∵S△ADC=
∴DM=
∵S△AOD=S△APO+S△DPO,
∴
即PE+PF=DM=
故选B.
点评:本题考查了矩形的性质、三角形的面积公式、勾股定理的应用,关键是求出PE+PF=DM.
练习册系列答案
相关题目