题目内容


如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是(  )

  A.  B. 6 C.  D. 3

 


C 解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.

∵AD是∠BAC的平分线,

∴M′H=M′N′,

∴BH是点B到直线AC的最短距离(垂线段最短),

∵AB=6,∠BAC=45°,

∴BH=AB•sin45°=6×=3

∵BM+MN的最小值是BM′+M′N′=BM′+M′H=BH=3

故选.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网