题目内容


如图,已知∠1+∠2=180°,∠B=∠3,你能判断∠C与∠AED的大小关系吗?并说明理由.


【考点】平行线的判定与性质.

【分析】∠C与∠AED相等,理由为:由邻补角定义得到∠1与∠DFE互补,再由已知∠1与∠2互补,根据同角的补角相等可得出∠2与∠DFE相等,根据内错角相等两直线平行,得到AB与EF平行,再根据两直线平行内错角相等可得出∠3与∠ADE相等,由已知∠B与∠3相等,利用等量代换可得出∠B与∠ADE相等,根据同位角相等两直线平行得到DE与BC平行,再根据两直线平行同位角相等可得证.

【解答】解:∠C与∠AED相等,理由为:

证明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义),

∴∠2=∠DFE(同角的补角相等),

∴AB∥EF(内错角相等两直线平行),

∴∠3=∠ADE(两直线平行内错角相等),

又∠B=∠3(已知),

∴∠B=∠ADE(等量代换),

∴DE∥BC(同位角相等两直线平行),

∴∠C=∠AED(两直线平行同位角相等).

 


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网