题目内容
直角三角形中,两直角边长分别为12和5,则斜边中线长是 .
分解因式: .
如图,在△ABD和△ACE中,有下列四个等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE.以其中三个条件为题设,填入已知栏中,一个论断为结论,填入下面求证栏中,使之组成一个真命题,并写出证明过程.
已知: .
求证:
证明:
若等腰三角形的顶角为40°,则它的底角度数为( )
A.40° B.50° C.60° D.70°
如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.
(1)求证:△ABO≌△DCO;
(2)△OBC是何种三角形?证明你的结论.
如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为( )
A.4cm B.6cm C.8cm D.10cm
把不等式组的解集表示在数轴上,正确的是( )
分解因式3(a+2)2-2(a+2)=
如图所示,n+1个直角边长为1的等腰直角三角形,斜边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△Bn+1DnCn的面积为Sn,则S1= ,Sn= (用含n的式子表示).