题目内容
货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意可列方程 .
(本题满分12分)已知在四边形ABCD中,∠A=x, ∠C=y,(, ).
(1)∠ABC + ∠ADC= (用含x、y的代数式表示) ;
(2)如图1,若x=y=90°,DE平分∠ADC ,BF平分与∠ABC相邻的外角,请写出DE 与 BF 的位置关系,并说明理由.
(3)如图2,∠DFB为四边形ABCD的∠ABC、∠ADC相邻的外角平分线所在直线构成的锐角,
①当x﹤y时,若x+y=140°,∠DFB=30°试求x、y.
②小明在作图时,发现∠DFB不一定存在,请直接指出x、y满足什么条件时,
∠DFB不存在.
由方程组,可得到x与y的关系式是__________.
(本题10分)已知:关于x的方程kx2-(3k-1)x+2(k-1)=0,
(1)求证:无论k为何实数,方程总有实数根;
(2)若此方程有两个实数根x1,x2,且|x1-x2|=2,求k的值.
计算下列各题(每小题5分,共10分):
(1)——(—);
(2).
写出一个一根为2的一元二次方程_________ _____.
(本题14分)在平面直角坐标系中,O为原点,四边形OABC的顶点A在轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点.
(1)若四边形OABC为矩形,如图1,
①求点B的坐标;
②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;
(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥轴,与对角线AC、边OC分别交于点E、点F.若B1E: B1F=1:3,点B1的横坐标为,求点B1的纵坐标,并直接写出的取值范围.
如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )
A.SAS B.ASA C.AAS D.SSS
解一元二次方程时,可转化为两个一元一次方程,请写出其中的一个一元一次方程