题目内容
将A,B,C,D四人随机分成甲、乙两组参加羽毛球比赛,每组两人。
(1)A在甲组的概率是多少?
(2)A,B都在甲组的概率是多少?
如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x,则x的取值范围是_____.
如图,在平面直角坐标系xOy中,已知直线AC的解析式为y=﹣x+1,直线AC交x轴于点C,交y轴于点A.
(1)若等边△OBD的顶点D与点C重合,另一顶点B在第一象限内,直接写出点B的坐标;
(2)过点B作x轴的垂线l,在l上是否存在一点P,使得△AOP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)试在直线AC上求出到两坐标轴距离相等的所有点的坐标.
小王同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x,乙立方体朝上一面上的数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=上的概率为( )
A. B. C. D.
已知抛物线与x轴交点A(1,0),B(-3,0) .与y轴交点B(0,3),如图1所示,D为抛物线的顶点。
(1)求抛物线的解析式;
(2)如图1若R为y轴上的一个动点,连接AR,则RB+AR的最小值为
(3)在x轴上取一动点P(m,0),,过点P作x轴的垂线,分别交抛物线、CD、CB于点Q、F、E,如图2所示,求证EF=EP.
(4)设此抛物线的对称轴为直线MN,在直线MN上取一点T,使∠BTN=∠CTN.直接写出点T的坐标。
在矩形ABCD中 ,AB=8 , BC=6, 点P在边AB上。若将△DAP沿DP折叠 ,使点A落在矩形对角线上的点A,处,则AP的长为__________。
因式分【解析】xy2﹣4x=__.
计算:(﹣2)0++4cos30°﹣|﹣|.
在1,0,,﹣3这四个数中,最大的数是( )
A. 1 B. 0 C. D. ﹣3