题目内容


如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:

①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH

其中,正确的结论有(  )

   A. 1个           B. 2个               C. 3个               D. 4个


B. 解:∵四边形ABCD是正方形,

∴∠B=∠DCB=90°,AB=BC,

∵AG=CE,

∴BG=BE,

由勾股定理得:BE=GE,∴①错误;

∵BG=BE,∠B=90°,

∴∠BGE=∠BEG=45°,

∴∠AGE=135°,

∴∠GAE+∠AEG=45°,

∵AE⊥EF,

∴∠AEF=90°,

∵∠BEG=45°,

∴∠AEG+∠FEC=45°,

∴∠GAE=∠FEC,

在△GAE和△CEF中

∴△GAE≌△CEF,∴②正确;

∴∠AGE=∠ECF=135°,

∴∠FCD=135°﹣90°=45°,∴③正确;

∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,

∴∠FEC<45°,

∴△GBE和△ECH不相似,∴④错误;

即正确的有2个.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网