题目内容
如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,
(1)求证:CF=2AF;
(2)求tan∠CFD的值.
个不透明的口袋里装有分别标有汉字“美”、“丽”、“西”、“湖”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任取一个球,球上的汉字刚好是“西”的概率为多少?
(2)甲从中任取一球,不放回,再从中任取一球,请用画树状图的方法,求出甲取出的两个球上的汉字恰能组成“美丽”或“西湖”的概率P1;
(3)乙从中任取一球,记下汉字后再放回袋中,再从中任取一球,记乙取出的两个球上的汉字恰能组成“美丽”或“西湖”的概率为P2,请比较P1,P2的大小关系。
在□ABCD中,若∠A=40°,则∠C=( )
A. 140° B. 130° C. 50° D. 40°
方程=x的实数解是__.
如果函数的图像不经过第四象限,那么实数的取值范围为 ( )
A. ; B. ; C. ; D. .
如图,E、F分别为正方形ABCD的边AB、AD上的点,且AE=AF,联接EF,将△AEF绕点A逆时针旋转45°,使E落在E,F落在F,联接BE并延长交DF于点G,如果AB=,AE=1,则DG=______.
如果正比例函数的图像经过原点和第一、第三象限,那么______.
计算
(1)101×99;(2)
小明做了以下4道计算题:①(-1)2010=2010;②0-(-1)=-l;③-+=-;④÷(-)=-1. 其中做对的共有
A. 1道 B. 2道 C. 3道 D. 4道