题目内容

如图,在矩形ABCD中,AB>AD,AB=1,AN平分∠DAB,DM⊥AN,垂足为M,CN⊥AN,垂足为N,则DM+CN的值为


  1. A.
    1
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:根据“AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N”得∠MDC=∠NCD=45°,cos45°==,所以DM+CN=CDcos45°;
再根据矩形ABCD,AB=CD=1,DM+CN的值即可求出.
解答:∵AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N,
∴∠ADM=∠MDC=∠NCD=45°,
∵cos45°=,cos45°=
∴DE=,CE=
∵DE+CE=CD,
+=CD,
在矩形ABCD中,AB=CD=1,
∴DM+CN=acos45°=
故选D.
点评:本题利用角平分线的性质和45°角的余弦的定义和余弦值求解,比较灵活,有利于培养学生的刻苦钻研精神.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网