题目内容
下列等式成立的是
(A) (B)
(C) (D).
如图,在△ABC中,∠B=90°,AB=6米,BC=8米,动点P以2米/秒的速度从A点出发,沿AC向点C移动,同时,动点Q以1米/秒的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动,设移动的时间为t秒.
(1)①当t=2.5秒时,求△CPQ的面积;
②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;
(2)在P、Q移动的过程中,当△CPQ为等腰三角形时,直接写出t的值;
若+|b-2|=0,则以a,b为边长的等腰三角形的周长为 .
因式分【解析】5x3y﹣20xy3;
计算:= .
等腰三角形一腰上的高等于这腰的一半,则这个等腰三角形的顶角等于( )
(A)30° (B)60° (C)30°或150° (D)60°或120°
已知:如图,在△ABC中,AB=AC,在AB,AC上分别截取相等的两条线段AD、AE,并连结BE、CD.求证:△ADC≌△AEB.
下面各题的计算正确的是( )
A.
B.
C.
D.
若ax=3,则(a2)x= .