题目内容

如图1在平面直角坐标系中,O是坐标原点,?ABCD的顶点A的坐标为(-2,0),点D的坐标为(0,2),点B在x轴的正半轴上,点E为线段AD的中点,过点E的直线l与x轴交于点F,与射线DC交于点G.
(1)求∠DCB的度数;
(2)连接OE,以OE所在直线为对称轴,△OEF经轴对称变换后得到△OEF',记直线EF'与射线DC的交点为H.
①如图2,当点G在点H的左侧时,求证:△DEG∽△DHE;
②若△EHG的面积为3,请直接写出点F的坐标.
【答案】分析:(1)由于平行四边形的对角相等,只需求得∠DAO的度数即可,在Rt△OAD中,根据A、D的坐标,可得到OA、OD的长,那么∠DAO的度数就不难求得了.
(2)①根据A、D的坐标,易求得E点坐标,即可得到AE、OE的长,由此可判定△AOE是等边三角形,那么∠OEA=∠AOE=∠EOF′=60°,由此可推出OF′∥AE,即∠DEH=∠OF′E,根据轴对称的性质知∠OF′E=∠EFA,通过等量代换可得∠EFA=∠DGE=∠DEH,由此可证得所求的三角形相似.
②过E作CD的垂线,设垂足为M,则EM为△EGH中GH边上的高,根据△EGH的面积即可求得GH的长,在①题已经证得△DEG∽△DHE,可得DE2=DG•DH,可设出DG的长,然后表示出DH的值,代入上面的等量关系式中,即可求得DG的长,根据轴对称的性质知:DG=AF,由此得到AF的长,进而可求得F点的坐标,需注意的是,在表示DH的长时,要分两种情况考虑:一、点H在G的右侧,二、点H在G的左侧.
解答:解:(1)在直角△OAD中,∵tan∠OAD=OD:OA=
∴∠A=60°,
∵四边形ABCD是平行四边形,
∴∠C=∠A=60°;

(2)①证明:∵A(-2,0),D(0,2),且E是AD的中点,
∴E(-1,),AE=DE=2,OE=OA=2,
∴△OAE是等边三角形,则∠AOE=∠AEO=60°;
根据轴对称的性质知:∠AOE=∠EOF′,故∠EOF′=∠AEO=60°,即OF′∥AE,
∴∠OF′E=∠DEH;
∵∠OF′E=∠OFE=∠DGE,
∴∠DGE=∠DEH,
又∵∠GDE=∠EDH,
∴△DGE∽△DEH.

②过点E作EM⊥直线CD于点M,
∵CD∥AB,
∴∠EDM=∠DAB=60°,
∴EM=DE•sin60°=2×=
∵S△EGH=•GH•ME=•GH•=3
∴GH=6;
∵△DHE∽△DEG,
=即DE2=DG•DH,
当点H在点G的右侧时,设DG=x,DH=x+6,
∴4=x(x+6),
解得:x1=-3+,x2=-3-(舍),
∴点F的坐标为(1-,0);
当点H在点G的左侧时,设DG=x,DH=x-6,
∴4=x(x-6),
解得:x1=3+,x2=3-(舍),
∵△DEG≌△AEF,
∴AF=DG=3+
∵OF=AO+AF=3++2=+5,
∴点F的坐标为(--5,0),
综上可知,点F的坐标有两个,分别是F1(1-,0),F2(--5,0).
点评:此题涉及的知识点较多,主要有:平行四边形的性质、轴对称的性质、全等三角形以及相似三角形的判定和性质,综合性强,难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网