题目内容
4.解方程组:$\left\{\begin{array}{l}{x}^{2}-3xy+2{y}^{2}=0\\{x}^{2}+{y}^{2}=1\end{array}\right.$.分析 根据因式分解,可用Y表示x,根据代入消元法,可得方程组的解.
解答 解:$\left\{\begin{array}{l}{{x}^{2}-3xy+2{y}^{2}=0①}\\{{x}^{2}+{y}^{2}=1②}\end{array}\right.$,
由①得(x-y)(x-2y)=0.
于是,得
x-y=0或x-2y=0,
x=y③或x=2y④.
将③代入②得2x2=1,解得x=±$\frac{\sqrt{2}}{2}$,y=$±\frac{\sqrt{2}}{2}$,
方程组的解为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}}\\{y=\frac{\sqrt{2}}{2}}\end{array}\right.$,$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}}\\{y=-\frac{\sqrt{2}}{2}}\end{array}\right.$;
将④代入②得5y2=1,解得y=$±\frac{\sqrt{5}}{5}$,x=±$\frac{2\sqrt{5}}{5}$,
方程组的解为$\left\{\begin{array}{l}{x=\frac{2\sqrt{5}}{5}}\\{y=\frac{\sqrt{5}}{5}}\end{array}\right.$,$\left\{\begin{array}{l}{x=-\frac{2\sqrt{5}}{5}}\\{y=-\frac{\sqrt{5}}{5}}\end{array}\right.$.
综上所述:原方程组的解为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}}\\{y=\frac{\sqrt{2}}{2}}\end{array}\right.$,$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}}\\{y=-\frac{\sqrt{2}}{2}}\end{array}\right.$$\left\{\begin{array}{l}{x=\frac{2\sqrt{5}}{5}}\\{y=\frac{\sqrt{5}}{5}}\end{array}\right.$,$\left\{\begin{array}{l}{x=-\frac{2\sqrt{5}}{5}}\\{y=-\frac{\sqrt{5}}{5}}\end{array}\right.$.
点评 本题考查了解方程组,利用因式分解得出x=y或x=2y是解题关键.
| A. | 12 | B. | 10 | C. | 8 | D. | 6 |
①∠AOB+∠BOC=45°;②BC=2AB;③OB2=10AB2;④OC2=$\frac{8}{5}$OB2.
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
| A. | 80° | B. | 50° | C. | 40° | D. | 25° |