题目内容
如图,△ABC的中线BD、CE交于点O,连接OA,点G、F分别为OC、OB的中点,BC=8,AO=6,则四边形DEFG的周长为( )
A. 12 B. 14 C. 16 D. 18
如图,∠AOB=90°,∠BOC=60°,射线OM平分∠AOC,ON平分∠BOC。
(1)求∠MON的度数;
(2)如果(1)中,∠AOB=α,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;
(3)从(1)、(2)的结果中,你能得到什么规律?
某种商品若按标价的八折出售,可获利20%,若按标价出售,则可获利 ( )
A.25% B. 40% C. 50% D. 66.7%
在Rt△ABC纸片中,∠ACB=90°,AC=6,BC=8,P是AB边上一点,连接CP.沿CP把Rt△ABC纸片裁开,要使△ACP是等腰三角形,那么AP的长度是________
如图,在矩形ABCD中,O是对角线的交点,AE⊥BD于E,若OE:OD=1:2,AC=18cm,则AB=________cm.
如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是( )
A. AB=CD B. AD=BC C. AB=BC D. AC=BD
将下面的解答过程补充完整:
如图,已知EF⊥AB,CD⊥AB,AC⊥BC,,求证:DG⊥BC
证明:∵ EF⊥AB,CD⊥AB(已知)
∴(___________)
∴EF∥CD (_____________________________)
∴____(_________________________)
∵(已知)
∴_____(______________________)
∴DG∥AC(______________________________)
∴ (_____________________________)
∵AC⊥BC(已知)
∴
∴,即DG⊥BC
如图,已知AB∥CD,∠A=70°,则∠1度数是( )
A. 70° B. 100° C. 110° D. 130°
已知△ABC的周长为1,连接其三边中点构成第二个三角形,再连接第二个三角形的中点构成第三个三角形,以此类推,则第2012个三角形的周长为( )
A. B. C. D.