题目内容


已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF

(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(6分)

(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(2分)

(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;

①请直接写出CF,BC,CD三条线段之间的关系;(2分)新 课  标  第   一 网

②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.(5分)


.证明:(1)∵∠BAC=90°,∠ABC=45°,

∴∠ACB=∠ABC=45°,

∴AB=AC,

∵四边形ADEF是正方形,

∴AD=AF,∠DAF=90°,

∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,

∴∠BAD=∠CAF,

则在△BAD和△CAF中,

∴△BAD≌△CAF(SAS),

∴BD=CF,

∵BD+CD=BC,

∴CF+CD=BC;

(2)CF﹣CD=BC;

(3)①CD﹣CF=BC

②∵∠BAC=90°,∠ABC=45°,

∴∠ACB=∠ABC=45°,

∴AB=AC,

∵四边形ADEF是正方形,

∴AD=AF,∠DAF=90°,

∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,

∴∠BAD=∠CAF,

∵在△BAD和△CAF中,

∴△BAD≌△CAF(SAS),

∴∠ACF=∠ABD,

∵∠ABC=45°,

∴∠ABD=135°,

∴∠ACF=∠ABD=135°,

∴∠FCD=90°,

∴△FCD是直角三角形.

∵正方形ADEF的边长为2且对角线AE、DF相交于点O.

∴DF=AD=4,O为DF中点.

∴OC=DF=2.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网