题目内容
设x,y为实数,满足x+y=1,x4+y4=
,则x2+y2的值是( )
| 7 |
| 2 |
| A.2 | B.3 | C.4 | D.5 |
∵x+y=1,
∴x2+y2+2xy=1,
∴x2+y2=1-2xy,
∵x4+y4=
,
∴(x2+y2)2-2x2y2=
,
∴(1-2xy)2-2x2y2=
,
整理得出:2x2y2-4xy+1=
,
解得:xy=1±
,
∴x2+y2=1-2(1+1.5)=-4(不合题意舍去)或x2+y2=1-2(1-1.5)=2.
故选:A.
∴x2+y2+2xy=1,
∴x2+y2=1-2xy,
∵x4+y4=
| 7 |
| 2 |
∴(x2+y2)2-2x2y2=
| 7 |
| 2 |
∴(1-2xy)2-2x2y2=
| 7 |
| 2 |
整理得出:2x2y2-4xy+1=
| 7 |
| 2 |
解得:xy=1±
| 3 |
| 2 |
∴x2+y2=1-2(1+1.5)=-4(不合题意舍去)或x2+y2=1-2(1-1.5)=2.
故选:A.
练习册系列答案
相关题目