题目内容
如图所提供的信息正确的是( )
A. 七年级学生最多 B. 九年级的男生是女生的两倍
C. 九年级的女生比男生多 D. 八年级比九年级的学生多
计算:
⑴; ⑵.
已知点A(-1,-4),B(-1,3),则( )
A. A,B关于x轴对称 B. A,B关于y轴对称
C. 直线AB平行于y轴 D. 直线AB垂直于y轴
如图,是某班学生外出乘车、步行、骑车的人数条形统计图和扇形统计图,则该班共有____名学生.
如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:
①EF⊥AC; ②四边形ADFE为菱形; ③AD=4AG; ④FH=BD
其中正确的结论有( ).
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
关于三角函数有如下公式:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβ
cos(α+β)=cosαcosβ﹣sinαsinβ,cos(α﹣β)=cosαcosβ+sinαsinβ
tan(α+β)=(1﹣tanαtanβ≠0)
tan(α﹣β)=(1+tanαtanβ≠0)
利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.
如:tan105°=tan(45°+60°)=
根据上面的知识,你可以选择适当的公式解决下面问题:
如图,两座建筑物AB和DC的水平距离BC为24米,从点A测得点D的俯角α=15°,测得点C的俯角β=75°,求建筑物CD的高度.
如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F为DE中点,若点D在直线BC上运动,连接CF,则在点D运动过程中,线段CF的最小值是_____.
如图,已知直线l1∥l2,直线l3和直线l1,l2交于点C和D,直线l3上有一点P.
(1)如图1,若P点在C,D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化,并说明理由;
(2)若点P在C,D两点的外侧运动时(P点与点C,D不重合,如图2和3),试直接写出∠PAC,∠APB,∠PBD之间的关系,不必写理由.
如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为10cm,那么△ABC的周长为_____cm.