题目内容
如图,△ABC中,∠ABC、∠ACB的平分线交于点F,过点F作DE∥BC分别交AB、AC于D、E,已知△ADE的周长为20cm,且BC=12cm,求△ABC的周长.
解:∵∠ABC、∠ACB的平分线交于点F
∴∠DBF=∠FBC
又∵DE∥BC∴∠DFB=∠FBC
∴∠DFB=∠DBF∴BD=DF
同理EC=EF
∵△ADE的周长为20cm,即AD+AE+DF+EF=20cm,
∴AD+AE+BD+EC=AB+AC=20cm
又∵BC=12cm,∴AB+AC+BC=32cm
即△ABC的周长为32cm.
分析:由∠ABC、∠ACB的平分线交于点F,得BD=DF,同理EC=EF,利用等量代换,将已知数值代入即可求得答案.
点评:此题考查学生对等腰三角形的判定与性质和平行线的性质的理解和掌握,主要利用等腰三角形两边相等.稍微有点难度是一道中档题.
∴∠DBF=∠FBC
又∵DE∥BC∴∠DFB=∠FBC
∴∠DFB=∠DBF∴BD=DF
同理EC=EF
∵△ADE的周长为20cm,即AD+AE+DF+EF=20cm,
∴AD+AE+BD+EC=AB+AC=20cm
又∵BC=12cm,∴AB+AC+BC=32cm
即△ABC的周长为32cm.
分析:由∠ABC、∠ACB的平分线交于点F,得BD=DF,同理EC=EF,利用等量代换,将已知数值代入即可求得答案.
点评:此题考查学生对等腰三角形的判定与性质和平行线的性质的理解和掌握,主要利用等腰三角形两边相等.稍微有点难度是一道中档题.
练习册系列答案
相关题目