题目内容
分析:根据等腰梯形的性质,可知CB=AD,∠CBE=∠DAE,又因为BE=AE,所以△CBE≌△DAE,则DE=CE.
解答:证明:∵等腰梯形ABCD,
∴BC=AD,∠CBE=∠DAE.
∵E是AB上的中点,
∴BE=AE.
∴△CBE≌△DAE(SAS).
∴DE=CE.
∴BC=AD,∠CBE=∠DAE.
∵E是AB上的中点,
∴BE=AE.
∴△CBE≌△DAE(SAS).
∴DE=CE.
点评:本题主要考查等腰梯形的性质的应用.
练习册系列答案
相关题目