题目内容
如图是二次函数y=a
+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:
①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,
),(3,
)是抛物线上两点,则
>
,
其中正确的序号是
![]()
①③④
【解析】
试题分析:对称轴为x=-1,即-
=-1,则b=2a,即b-2a=0,∴①正确;根据图象可得x=-2和x=0时所对应的函数值相同,x=0时,y>0,即x=-2时,y>0,则4a-2b+c>0,∴②错误;当x=2时,y=0,即4a+2b+c=0,∵b=2a ∴4a+4a+c=0,即c=-8a,则a-b+c=a-2a-8a=-9a,∴③正确;x=-3到对称轴的距离为2,x=3到对称轴的距离为4,则
>
,∴④正确.
考点:二次函数的性质
考点分析: 考点1:二次函数 定义:一般地,如果
①所谓二次函数就是说自变量最高次数是2;
②二次函数
③二次函数
(1)一般式:
(2)顶点式:
(3)当抛物线
二次函数的一般形式的结构特征:
①函数的关系式是整式;
②自变量的最高次数是2;
③二次项系数不等于零。 二次函数的判定:
二次函数的一般形式中等号右边是关于自变量x的二次三项式;
当b=0,c=0时,y=ax2是特殊的二次函数;
判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成
- 题型:
- 难度:
- 考核:
- 年级:
练习册系列答案
相关题目
我区某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是
班级 | 1班 | 2班 | 3班 | 4班 | 5班 | 6班 |
人数 | 52 | 60 | 62 | 54 | 58 | 62 |
A.平均数是60 B.中位数是59 C.极差是40 D.众数是58