题目内容


如图,△ABC中,AC=AD,BC=BE,∠ACB=100°,则∠ECD=(     )

A.20°   B.30°    C.40°   D.50°


C【考点】等腰三角形的性质.

【分析】首先设∠ACE=x°,∠DCE=y°,∠BCD=z°,由BE=BC,AD=AC,利用等腰三角形的性质,即可用x,y,z表示出∠ADC与∠BEC的度数,又由三角形外角的性质,得到∠A与∠B的值,然后由在△ABC中,∠ACB=100°,利用三角形内角和定理得到方程,继而求得∠DCE的大小.

【解答】解:设∠ACE=x°,∠DCE=y°,∠BCD=z°,

∵BE=BC,AD=AC,

∴∠ADC=∠ACD=∠ACE+∠DCE=(x+y)°,∠BEC=∠BCE=∠BCD+∠DCE=(y+z)°,

∴∠A=∠BEC﹣∠ACE=(y+z﹣x)°,∠B=∠ADC﹣∠BCD=(x+y﹣z)°,

∵在△ABC中,∠ACB=100°,

∴∠A+∠B=180°﹣∠ACB=80°,

∴y+z﹣x+x+y﹣z=80,

即2y=80,

∴y=40,

∴∠DCE=40°.

故选C.

【点评】本题考查了等腰三角形的性质、三角形内角和定理以及三角形外角的性质.此题难度适中,解答此题的关键是建立起各角之间的关系,结合图形列出方程进行解答.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网