题目内容
如图,△ABC中,AC=AD,BC=BE,∠ACB=100°,则∠ECD=( )
![]()
A.20° B.30° C.40° D.50°
C【考点】等腰三角形的性质.
【分析】首先设∠ACE=x°,∠DCE=y°,∠BCD=z°,由BE=BC,AD=AC,利用等腰三角形的性质,即可用x,y,z表示出∠ADC与∠BEC的度数,又由三角形外角的性质,得到∠A与∠B的值,然后由在△ABC中,∠ACB=100°,利用三角形内角和定理得到方程,继而求得∠DCE的大小.
【解答】解:设∠ACE=x°,∠DCE=y°,∠BCD=z°,
∵BE=BC,AD=AC,
∴∠ADC=∠ACD=∠ACE+∠DCE=(x+y)°,∠BEC=∠BCE=∠BCD+∠DCE=(y+z)°,
∴∠A=∠BEC﹣∠ACE=(y+z﹣x)°,∠B=∠ADC﹣∠BCD=(x+y﹣z)°,
∵在△ABC中,∠ACB=100°,
∴∠A+∠B=180°﹣∠ACB=80°,
∴y+z﹣x+x+y﹣z=80,
即2y=80,
∴y=40,
∴∠DCE=40°.
故选C.
【点评】本题考查了等腰三角形的性质、三角形内角和定理以及三角形外角的性质.此题难度适中,解答此题的关键是建立起各角之间的关系,结合图形列出方程进行解答.
练习册系列答案
相关题目