题目内容
如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为
- A.8cm
- B.
cm - C.6cm
- D.2cm
A
分析:由于⊙O的直径CD=10cm,则⊙O的半径为5cm,又已知OM:OC=3:5,则可以求出OM=3,OC=5,连接OA,根据勾股定理和垂径定理可求得AB.
解答:
解:如图所示,连接OA.
⊙O的直径CD=10cm,
则⊙O的半径为5cm,
即OA=OC=5,
又∵OM:OC=3:5,
所以OM=3,
∵AB⊥CD,垂足为M,
∴AM=BM,
在Rt△AOM中,AM=
,
∴AB=2AM=2×4=8.
故选A.
点评:解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+(
)2成立,知道这三个量中的任意两个,就可以求出另外一个.
分析:由于⊙O的直径CD=10cm,则⊙O的半径为5cm,又已知OM:OC=3:5,则可以求出OM=3,OC=5,连接OA,根据勾股定理和垂径定理可求得AB.
解答:
⊙O的直径CD=10cm,
则⊙O的半径为5cm,
即OA=OC=5,
又∵OM:OC=3:5,
所以OM=3,
∵AB⊥CD,垂足为M,
∴AM=BM,
在Rt△AOM中,AM=
∴AB=2AM=2×4=8.
故选A.
点评:解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+(
练习册系列答案
相关题目
| A、80° | B、50° | C、40° | D、20° |