题目内容

16.AD是△ABC的角平分线,过点D作DE⊥AB于E,DF⊥AC于F,则下列结论不一定正确的是(  )
A.DE=DFB.BD=CDC.AE=AFD.∠ADE=∠ADF

分析 根据角平分线上的点到角的两边距离相等可得DE=DF,然后利用“HL”证明Rt△ADE和Rt△ADF全等,根据全等三角形对应边相等可得AE=AF,∠ADE=∠ADF.

解答 解:如图,∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,
∴DE=DF,
在Rt△ADE和Rt△ADF中,
$\left\{\begin{array}{l}{AD=AD}\\{DE=DF}\end{array}\right.$,
∴Rt△ADE≌Rt△ADF(HL),
∴AE=AF,∠ADE=∠ADF,
只有AB=AC时,BD=CD.
综上所述,结论错误的是BD=CD.
故选B.

点评 本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质是解题的关键,作出图形更形象直观.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网