题目内容
| ABO |
A、
| ||
B、
| ||
C、
| ||
D、
|
分析:连接AB,利用圆周角定理得∠C=∠ABO,将问题转化到Rt△ABO中,利用锐角三角函数定义求解.
解答:
解:如图,连接AB,
∵∠AOB=90°,∴AB为圆的直径,
由圆周角定理,得∠C=∠ABO,
在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,
∴cosC=cos∠ABO=
=
.
故选D.
∵∠AOB=90°,∴AB为圆的直径,
由圆周角定理,得∠C=∠ABO,
在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,
∴cosC=cos∠ABO=
| OB |
| AB |
| 4 |
| 5 |
故选D.
点评:本题考查了圆周角定理,坐标与图形的性质,勾股定理及锐角三角函数的定义.关键是运用圆周角定理将所求角转化到直角三角形中解题.
练习册系列答案
相关题目
(2011山东济南,12,3分)如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为( )
A. B.
C.
D.