题目内容
(8分)商场某种商品平均每天可销售30件,每件盈利50元。为了尽快减少库存,商场决定采取适当的降价措施。经调查发现,每件商品每降价1元,商场平均每天可多售出2件。设每件商品降价x元。据此规律,请回答:
(1)商场日销售量增加 件,每件商品盈利 元(用含x的代数式表示);(2分)
(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?(6分)
(1)2x 50-x (2)20
【解析】
试题分析:(1)根据每件商品每降价1元,商场平均每天可多售出2件,可得每天多卖的数为2x件,每件的利润为(50-x)元;
(2)根据利润相等的关系可以列一元二次方程求出符合要求的结过.
试题解析:【解析】
(1)2x 50-x
(2)由题意得:(50-x)(30+2x)=2100
化简得:x2-35x+300=0
解得:x1=15, x2=20
∵该商场为了尽快减少库存,则x=15不合题意,舍去.
∴x=20
答:每件商品降价20元,商场日盈利可达2100元.
考点:列一元二次方程解实际问题
考点分析: 考点1:一元二次方程 定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
一元二次方程的一般形式:
它的特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中 ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。 试题属性
- 题型:
- 难度:
- 考核:
- 年级:
练习册系列答案
相关题目