题目内容
如果两个相似三角形周长的比是2:3,那么它们面积的比是_____.
用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是 ( )
A. SSS B. SAS C. ASA D. AAS
如图,将三角形ABC沿直线BC向右平移得到三角形A′B′C′,已知BC′=10,C B′=2,则BB′的长为_____.
如图,在平面直角坐标系中,抛物线与轴交于点(?1,0)和点,与轴交于点,对称轴为直线=1.
(1)求点的坐标(用含的代数式表示)
(2)连接、,若△的面积为6,求此抛物线的解析式;
(3)在(2)的条件下,点为轴正半轴上的一点,点与点,点与点关于点成中心对称,当△为直角三角形时,求点的坐标.
将一个三角形经过放大后得到另一个三角形,如果所得三角形在原三角形的外部,这两个三角形各对应边平行且距离都相等,那么我们把这样的两个三角形叫做“等距三角形”,它们对应边之间的距离叫做“等距”.如果两个等边三角形是“等距三角形”,它们的“等距”是1,那么它们周长的差是_____.
因式分【解析】 .
数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础。小白在草稿纸上画了一条数轴进行操作探究:
操作一:
(1)折叠纸面,若使1表示的点与﹣1表示的点重合,则﹣2表示的点与_______表示的点重合;
操作二:
(2)折叠纸面,若使1表示的点与﹣3表示的点重合,回答以下问题:
①3表示的点与_______表示的点重合;
②若数轴上A、B两点之间距离为7(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是______________;
操作三:
(3)在数轴上剪下9个单位长度(从﹣1到8)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(例如下图). 若这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是_____________________.
有一个两位数,十位数字是,个位数字是,若把它们的位置交换,得到新的两位数是( )
A. B. C. D.
解方程:(2x+3)2=2x+3