题目内容
(1)
+
+…+
;
(2)1-
+
-
+…-
+
.
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 49×50 |
(2)1-
| 3 |
| 2 |
| 5 |
| 6 |
| 7 |
| 12 |
| 19 |
| 90 |
| 21 |
| 110 |
考点:有理数的混合运算
专题:
分析:(1)把每一个分数拆分:
=1-
,
=
-
,…,
=
-
,进一步抵消算出和即可;
(2)把每一个分数拆分:
=1+
,
=
+
,
=
+
,…,
=
+
,
=
+
,进一步整理,把互为相反数的抵消即可.
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 49×50 |
| 1 |
| 49 |
| 1 |
| 50 |
(2)把每一个分数拆分:
| 3 |
| 2 |
| 1 |
| 2 |
| 5 |
| 6 |
| 1 |
| 2 |
| 1 |
| 3 |
| 7 |
| 12 |
| 1 |
| 3 |
| 1 |
| 4 |
| 19 |
| 90 |
| 1 |
| 9 |
| 1 |
| 10 |
| 21 |
| 110 |
| 1 |
| 10 |
| 1 |
| 11 |
解答:解:(1)原式=1-
+
-
+…+
-
=1-
=
;
(2)原式=1-(1+
)+(
+
)-(
+
)+…-(
+
)+(
+
)
=1-1-
+
+
-
-
+…-
-
+
+
=
.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 49 |
| 1 |
| 50 |
=1-
| 1 |
| 50 |
=
| 49 |
| 50 |
(2)原式=1-(1+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 9 |
| 1 |
| 10 |
| 1 |
| 10 |
| 1 |
| 11 |
=1-1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 9 |
| 1 |
| 10 |
| 1 |
| 10 |
| 1 |
| 11 |
=
| 1 |
| 11 |
点评:此题考查有理数的混合运算,注意分数的特点,合理进行拆分解决问题.
练习册系列答案
相关题目
下列方程为一元一次方程的是( )
| A、x-y=1 | ||
B、
| ||
| C、x=3 | ||
| D、x2-1=0 |
已知下列算式:
①(x+y)2=x2+y2;
②(x-2y)(x+2y)=x2+4xy-4y2;
③(x+3)(x2+3x+9)=x3-27;
④(a-2b2)(m-n)=am-an-2b2m+2b2n.
其中正确的算式有( )
①(x+y)2=x2+y2;
②(x-2y)(x+2y)=x2+4xy-4y2;
③(x+3)(x2+3x+9)=x3-27;
④(a-2b2)(m-n)=am-an-2b2m+2b2n.
其中正确的算式有( )
| A、1个 | B、2个 | C、3个 | D、4个 |
如果方程(a-b)x=|a-b|的解是x=-1,那么( )
| A、a=b | B、a>b |
| C、a≠b | D、a<b |
下列说法中正确的是( )
| A、3是-27的立方根 |
| B、(-2)3的立方根是-2 |
| C、4的平方根是2 |
| D、25的算术平方根是-5 |