题目内容

【题目】如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.

(1)若点D的横坐标为﹣5,求抛物线的函数表达式;

(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;

(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?

【答案】(1)抛物线的函数表达式为:y=(x+2)(x﹣4)

(2)k=或k=

(3)当点F坐标为(﹣2,2)时,点M在整个运动过程中用时最少.

【解析】

试题分析:(1)首先求出点A、B坐标,然后求出直线BD的解析式,求得点D坐标,代入抛物线解析式,求得k的值;

(2)因为点P在第一象限内的抛物线上,所以∠ABP为钝角.因此若两个三角形相似,只可能是△ABC∽△APB或△ABC∽△PAB.如答图2,按照以上两种情况进行分类讨论,分别计算;

(3)由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF.如答图3,作辅助线,将AF+DF转化为AF+FG;再由垂线段最短,得到垂线段AH与直线BD的交点,即为所求的F点.

试题解析:(1)抛物线y=(x+2)(x﹣4),

令y=0,解得x=﹣2或x=4,

∴A(﹣2,0),B(4,0).

∵直线y=﹣x+b经过点B(4,0),

∴﹣×4+b=0,解得b=

∴直线BD解析式为:y=﹣x+

当x=﹣5时,y=3

∴D(﹣5,3).

∵点D(﹣5,3)在抛物线y=(x+2)(x﹣4)上,

(﹣5+2)(﹣5﹣4)=3

∴k=

∴抛物线的函数表达式为:y=(x+2)(x﹣4).

(2)由抛物线解析式,令x=0,得y=﹣k,

∴C(0,﹣k),OC=k.

因为点P在第一象限内的抛物线上,所以∠ABP为钝角.

因此若两个三角形相似,只可能是△ABC∽△APB或△ABC∽△PAB.

①若△ABC∽△APB,则有∠BAC=∠PAB,如答图2﹣1所示.

设P(x,y),过点P作PN⊥x轴于点N,则ON=x,PN=y.

tan∠BAC=tan∠PAB,即:

∴P(x,),代入抛物线解析式y=(x+2)(x﹣4),

(x+2)(x﹣4)=x+k,整理得:x2﹣6x﹣16=0,

解得:x=8或x=﹣2(与点A重合,舍去),

∴P(8,5k).

∵△ABC∽△APB,

,即

解得:k=

②若△ABC∽△PAB,则有∠ABC=∠PAB,如答图2﹣2所示.

与①同理,可求得:k=

综上所述,k=或k=

(3)如答图3,由(1)知:D(﹣5,3),

如答图2﹣2,过点D作DN⊥x轴于点N,则DN=3,ON=5,BN=4+5=9,

∴tan∠DBA=

∴∠DBA=30°.

过点D作DK∥x轴,则∠KDF=∠DBA=30°.

过点F作FG⊥DK于点G,则FG=DF.

由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF,

∴t=AF+FG,即运动的时间值等于折线AF+FG的长度值.

由垂线段最短可知,折线AF+FG的长度的最小值为DK与x轴之间的垂线段.

过点A作AH⊥DK于点H,则t最小=AH,AH与直线BD的交点,即为所求之F点.

∵A点横坐标为﹣2,直线BD解析式为:y=﹣x+

∴y=﹣×(﹣2)+=2

∴F(﹣2,2).

综上所述,当点F坐标为(﹣2,2)时,点M在整个运动过程中用时最少.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网