题目内容
把命题“对顶角相等”写成“如果┉ ,那么┉ .”的形式______________________ .
如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
若直线y=ax+7经过一次函数y=4-3x和y=2x-1的交点,则a的值为_________
如图,平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b﹣2).
(1)平移后的三个顶点坐标分别为:.A1( ),B1( ),C1( ).
(2)在上图中画出平移后三角形A1B1C1;
(3)画出△AOA1并求出△AOA1的面积.
同学们玩过五子棋吗?它的比赛规则是只要同色5子先成一条直线就算胜,如图是两人玩的一盘棋,若白①的位置是(1,-5),黑②的位置是(2,-4),现轮到黑棋走,你认为黑棋放在_______位置就可获胜.
如图,点E在BC的延长线上,下列条件中不能判定AB∥CD的是( )
A. ∠1=∠2 B. ∠3=∠4 C. ∠B=∠DCE D. ∠D+∠DAB=180°
如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.
(1)求抛物线的解析式;
(2)若PE=5EF,求m的值;
(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.
若分式 的值为零,则x的值为( )
A. 0 B. 1 C. ﹣1 D. ±1
如图,点P为正方形ABCD的对角线BD上任一点,过点P作PE⊥BC,PF⊥CD,垂足分别为点E、F,连接EF.下列结论:①△FPD是等腰直角三角形;②AP=EF;③AD=PD;④∠PFE=∠BAP.其中正确的结论是__.(请填序号)