题目内容
正六边形ABCDEF的边长为cm,点P为ABCDEF内的任意一点,点P到正六边形ABCDEF各边所在直线的距离之和为s,则s=_____cm.
如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于( )
A. B. C. D.
现规定一种运算a*b=ab+a-b,其中a,b为有理数,则3*(-5)的值为___.
如图,直线y=﹣x﹣1与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx(a≠0)经过原点和点C(4,0),顶点D在直线AB上.
(1)求这个抛物线的解析式;
(2)在抛物线的对称轴上是否存在点P,使得以P、C、D为顶点的三角形与△ACD相似.若存在,请求出点P的坐标;若不存在,请说明理由;
(3)点Q是x轴上方的抛物线上的一个动点,若cos∠OQC=,⊙M经过点O,C,Q,求过C点且与⊙M相切的直线解析式.
已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).
(1)连接 ;
(2)猜想: = ;
(3)证明:(说明:写出证明过程的重要依据)
如图,下列各坐标对应点正好在图中直线l上的是( )
A. (0,2) B. (0,4) C. (1,2) D. (2,0)
定义:若抛物线L2:y=mx2+nx(m≠0)与抛物线L1:y=ax2+bx(a≠0)的开口大小相同,方向相反,且抛物线L2经过L1的顶点,我们称抛物线L2为L1的“友好抛物线”.
(1)若L1的表达式为y=x2﹣2x,求L1的“友好抛物线”的表达式;
(2)已知抛物线L2:y=mx2+nx为L1:y=ax2+bx的“友好抛物线”.求证:抛物线L1也是L2的“友好抛物线”;
(3)平面上有点P(1,0),Q(3,0),抛物线L2:y=mx2+nx为L1:y=ax2的“友好抛物线”,且抛物线L2的顶点在第一象限,纵坐标为2,当抛物线L2与线段PQ没有公共点时,求a的取值范围.
下列关于函数的四个命题:①当时, 有最小值10;②为任意实数, 时的函数值大于时的函数值;③若,且是整数,当时, 的整数值有个;④若函数图象过点和,其中, ,则.其中真命题的序号是( )
A. ① B. ② C. ③ D. ④
a10÷a2÷a3÷a4=_________, (2x+3y)5÷(2x+3y)3=_________.